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In continuation of our study of the existence of solutions of quantum stochastic 
differential inclusions, we first introduce and develop some aspects of the theory 
of maximal [resp. hypermaximal] monotone multifunctions, including the 
description of a number of properties of their resolvents and Yosida 
approximations, in the present noncommutative setting. Then, it is proved that, 
under a certain continuity assumption, a quantum stochastic differential inclusion 
of hypermaximal monotone type has a unique adapted solution which is obtained 
as the limit of the unique adapted solutions of a one-parameter family of 
Lipschitzian quantum stochastic differential equations. As examples, we show 
that a large class of quantum stochastic differential inclusions which satisfy the 
assumptions and conclusion of our main result arises as perturbations of certain 
quantum stochastic differential equations by some multivalued stochastic 
processes. 

1. INTRODUCTION 

In Ekhaguere (1992), we introduced the notion of a quantum stochastic 
differential inclusion within the framework of the Hudson and Parthasarathy 
(1984) formulation of quantum stochastic calculus. Inclusions are particularly 
relevant in, for example, quantum stochastic control theory, since control- 
theoretic problems may often be formulated as inclusions. In Ekhaguere 
(1992), the existence of solutions of a Lipschitzian quantum stochastic differ- 
ential inclusion was established. Moreover, a relaxation theorem giving the 
relationship between the solutions of such an inclusion and those of its 
convexification was also proved. Relaxation theorems are important in con- 
trol theory. 
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This paper continues our study of the question of existence of solutions 
of quantum stochastic differential inclusions. We introduce the important 
class of inclusions of hypermaximal monotone type. The members of this 
class are interesting in the discussion of the nonlinear evolution of the systems 
described by them, since they generate nonlinear evolution operators: these 
will be investigated elsewhere. We establish that, subject to a certain continuity 
condition, every quantum stochastic differential inclusion of hypermaximal 
monotone type has a unique adapted solution. 

The following is an outline of the rest of the paper. In Section 2, some 
of the notation employed in the subsequent discussion is clarified. This is 
made as consistent as possible with the notation in Ekhaguere (1992). Section 
3 introduces the notion of a regular multifunction as well as various notions 
of monotonicity for such a map. Some aspects of the theory of maximal [resp. 
hypermaximal] monotone multifunctions are developed there, by proving two 
results concerning these classes of multifunctions. The results generalize 
their well-known counterparts in the Banach space context to the present 
noncommutative setting. We conclude the section by describing the class of 
hypermaximal monotone multifunctions that are employed in the subsequent 
discussion. In Section 4, we introduce the notions of the resolvent and Yosida 
approximation of a hypermaximal monotone multifunction lying in the class 
described in Section 3. These are single-valued maps. Theorem 4.1 gives a 
number of results concerning the maps. The quantum stochastic differential 
inclusion studied in this paper is introduced in Section 5 as Problem (5.1)0. 
The results of Section 4 enable us to associate to Problem (5.1)0 a one- 
parameter family of quantum stochastic differential equations. These are 
Lipschitzian equations, each of which possesses a unique adapted solution. 
Our main result is obtained by showing that the one-parameter family of 
solutions of the Lipschitzian quantum stochastic differential equations con- 
verges to a unique adapted solution of Problem (5.1)0. As examples, we show 
that a large class of quantum stochastic differential inclusions which satisfy 
the assumptions and conclusion of our main result arises as perturbations 
of certain quantum stochastic differential equations by some multivalued 
stochastic processes. The results of this paper generalize classical analogs in 
the Banach space context and apply, in particular, to quantum stochastic 
differential equations of hypermaximal monotone type. 

2. PRELIMINARIES 

This section outlines some of the notation of this paper, which will be 
as consistent as possible with that in Ekhaguere (1992). Thus Y is a fixed 
Hilbert space. To this space, we associate a number of other function spaces 
as follows. For I C_ 1L~ --= [0, ~), L2(/) is the linear space of square-integrable 
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Y-valued functions on L and L,~,lor [resp. L~(u is the linear space of  
all measurable, locally bounded functions from I to Y [resp. to B(Y), the 
Banach space of bounded linear maps on Y]. If f e L~clo~(/) and 7r e 
L~y),jo~(/), then wf  e L-~joc(/) is given by (wf)(t) = 7r(t)f(t), for almost every 
t e l .  

When D is some complex pre-Hilbert space with H as its completion, 
we write + Lw (D, H) for the linear space of all linear maps x from D into H 
such that the domain of the operator adjoint x* of  x contains D, and F(H) 
for the Fock space (Guichardet, 1972) over H. F o r f  e H, define |  = 1 
and if n --- 1, define Q"f  as the n-fold tensor product o f f  with itself. Then, 

co 

e(f) = ~ (n!) -l/2 |  
n=O 

is in F(H) and is the exponential vector associated with f. In F(H), the set 
of all exponential vectors generates a dense subspace. Other properties of 
these vectors are described in Guichardet (1972) and Hudson and Parthasara- 
thy (1984). 

In the sequel, D is a pre-Hilbert space whose completion is .~, and E, 
Et, and a t, t > 0, are the linear spaces generated by the exponential vectors 
in F(L~(R+)), F(L~-([O, t))), and F(LZ([t, c~))), t > O, respectively. We denote 
the inner product and norm of the Hilbert space ~ | F(L~(IL~)) by (-, ") 
and I[" I[, respectively, and write ~ ,  -~t, and ~ t  for the linear spaces of  linear 
operators defined as follows: 

~ t  + ------ Lw(D ~ E,, ~ | F(L~([0, t)))) | i t 

~.q~t ~ + t 1, | Lw(E, F(L2([t, ~)))), t > 0 

where @ denotes algebraic tensor product throughout the paper and 1 t (resp. 
i ') is the identity map on ~ | F(L,~([0, t))) [resp. F(L2([t, ~)))], t > 0. It 
is clear that ~ t  and ~/t, t > 0, are linear subspaces of ,~/. The latter will be 
topologized as follows. For "q, ~ e D @ E, define the seminorm II'll~,~ on 
~ / b y  

and write ~'w for the locally convex topology generated by the family { 11.1[~,~: 
xl, ~ e D ~ E}. The completions of the locally convex spaces (~ ,  rw), (~t,  
"rw), and (~t, "rw), t > 0, will be denoted by ~ ,  ,~,, and ~/t, t > 0, respectively. 
The net {~/t: t E R+} filters ~ .  
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In the sequel, we denote the Fock space F(L~,(P~_)) simply by F and 
write ~ for the identity map on ~l | F. Then, 1 is the unit of  ~/( regarded 
as a partial *-algebra). 

2.1. Stochastic Processes 

Let I C_ 1L, be a subinterval. A stochastic process indexed by I is an 
~-valued map on I. Such a map X will be called adapted if X(t) E ~t  for 
each t ~ I. We denote the set of all adapted processes indexed by R+ by 
Ad(~) .  We are interested in certain classes of members of Ad(,~). We call 
X ~ Ad(~)  weakly absolutely continuous if the map t ~ ('q, X(t)~), t ~ g+, 
is absolutely continuous for "q, ~ E D ~ E, and locally absolutely square 
integrable if IIS(')ll~,~ is Lebesgue-measurable and integrable on [0, t) for 
each t c ~L-, all "q, ~ ~ D ~ E; the classes of stochastic processes determined 
by these notions will be denoted by Ad(,~)wac and L{oc(,~), respectively. We 
return to the discussion of stochastic processes in later sections. 

2.2. Other Notation 

The following notation will also be employed. 
If ~ is a linear space and n a natural number, we write ~"  [resp. ~(")] 

for the n-fold Cartesian product [resp. n-fold algebraic tensor product] of  
with itself. In case ~ is a Hilbert space, then ~(n) is the n-fold Hilbert 

space tensor product (Reed and Simon, 1972) of ~ with itself. 
The set of all sesquilinearforms on ~ will be denoted by sesq(~). I f p  

sesq(~), then the value of p at (x, y) ~ ~2 will be denoted by p(x, y). 
Throughout, a sesquilinear form is assumed to be conjugate-linear on the left. 

The sum A + B of two subsets A and B of  a linear space is defined by 

A + B -  { a + b : a  ~ A , b  E B} 

In particular, if a is some fixed member of  the linear space, then 

a + B -: {a + b: b E B} 

3. M O N O T O N E  MULT1FUNCTIONS 

Central to much of the subsequent discussion is the notion of a multifunc- 
tion. 

Let ~ and ~ be sets. A map P: ~ ---> 2 ~a is called a multifunction (or a 
set-valued function or a multivalued function). The subset P(x) C_ ~ is the 
image or value of P at x ~ ~. The values of the multifunctions encountered 
in this paper are quadratic forms (Reed and Simon, 1972). 
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The domain dom(P), range range(P), and graph graph(P) of  P: ~ ---> 
2 ~ are defined as follows: 

dom(P) = {x �9 ~:  P(x) :/: 0} 

range(P) = Ux~e P(x) 

graph(P) = {(x, y) �9 ~ • O8: y �9 P(x)} 

If  dom(P) = ~g, then P is called strict. For simplicity, we shall deal mainly 
with strict multifunctions. 

A selection of a multifunction P: ~ ---> 2 ~ is a map q~: ~ ----> ~ such that 

q~(x) �9 P(x), for each x �9 

Depending on the structures on ~ and ~ ,  it is often of interest to find out 
whether a given multifunction has selections of some specified type: e.g., 
measurable, continuous, Lipschitzian, or integrable selections. For some 
orientation about this problem, see Michael (1956) and Parthasarathy (1972). 

In case ~ is a topological linear space, the values of  the multifunction 
P: ~ ~ 2 ~ are called convex [resp. closed] if  P(x) is convex [resp. closed] 
for each x �9 ~ .  

Let P and Q be two multifunctions from the set ~ to 2 ~. Then, the sum 
P + Q is defined as follows: 

+ Q)(x) = ~P_(x) + Q(x) if  neither P(x) nor a(x)  is empty (P 
otherwise 

The following notation will be repeatedly used. Let ~ be a set, ~ a 
linear space, Y0 some member  of  O8, and P: ~ ~ 2 ~. Then, we define P(x) 
@yo, x �9 ~ , b y  

P(x) | Y0 = {P | Y0: P �9 P(x)}, x �9 

and denote the multifunction x ~ P(x) | Yo from ~ into 2 ~-~ by P | Y0. 

3.1. Regular Multifunctions 

We are principally interested in certain classes of  multifunctions which 
are monotone in some sense. We introduce the relevant notions of monoton- 
icity and develop some aspects of the theory of such monotone multifunctions. 

In what follows, let ~ = s~ or R+ X ,~. 
The multifunctions considered in the sequel are maps from ~ into 

2 s~Sq((D-~n)(%. It follows that if  ~ is such a multifunction and z e ~ ,  then 
~(z)  is a set of  quadratic forms on (D ~ •)(2). For ~1, ~2 �9 (D (~ E) (2) and 
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z �9 ~,  we define @(z)(~l, ~2) as the set 

~ ( z ) ( G  r 

= {P(~I, ~2): P is a sesquilinear form on (13 ~ E) (2) and p �9 @(z)} 

and regard this as the value of ~(z) at the point (~,  ~2) �9 (D ~ E) <2) X 
(D ~ E)~2). 

We consider multifunctions from ~ into 2 sesq((D~E)~2)) that are regular in 
some sense. Such quadratic-forms-valued multifunctions are encountered in 
quantum stochastic calculus. 

In the sequel, (., .)(2) denotes the inner product of ( ~  | F) (2). 
If ~ is a subset of ~ / ~  ~ ,  then the notation (~1, ~]~2)(2) is specified by 

for ~1, ~2 �9 (D ~_ ]~)(2). 

Definition 3.1. A multifunction ~ :  ~ --+ 2 sesq((B-~){2)) will be called 
regular if 

~'(z)(~l | "q2, ~1 | ~2) = (oi | "q:, ~ ,~2~2(z ) (~1  | ~2))~2) 

for some subset ~,~1~,,~2~2(z) of ~ ~ ~ ,  and all z �9 ~, %- = uj Q e(og), 
= v; | e(l%), uj, v s �9 D, 0 9, I% �9 L~ao~(R+), j = 1, 2. 

~,(2) Remark 3.2. 1. A regular multifunction ~': ~ -+ 2 s~sq~a~-~' gives rise 
to an array (~-,~,~2~2: ~ 13j �9 L~(R+), j = 1, 2) of multifunctions from 
into 2 a-~ The notions of monotonicity introduced below involve the diagonal 
( ~ ' , ~ :  a, [3 �9 L2(R+)) of this array. 

We assume in what_follows that the range of  ~f~f~ is contained in some 
unital subspace _(at ~ a~)~f~ of al @_@ ~ ,  i.e., a subspace containing the unit 

| ~ o f a l ~ a l .  
2. If ~:  ~ --+ 2 s~sq~D-~E)~2)) is regular and such that ~ ' , ~  is of the form 

P ~  | 1, for some multifunction P ~ :  ~ --+ 2 ~, then we define the map 

P: ~ ---> 2sesq((D~E) (2)) 

by 

P(z)(o, ~) = (0, G ~ ( z ) G  z �9 

for all 0, ~ �9 D (~ E, with Ii = u @ e(o0, ~ = v Q e([3), or, [3 �9 
L~,loc(R+), u, v �9 D, and write ~ as ~ = P | 1. In the sequel, we assume 
that the range of  P ~  is contained in some unital subspace a ~  of  ~ ,  i.e., a 
subspace containing the unit 1 of  ~ .  
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3.2. The @-Functional 

For any ordered pair ('q, 6) in (D @ E) 2, the symbol (91 | F)/~!~ ) denotes 
the closure of the linear space (.~ @ ~)(~ @ ~q) in (3l | F) (2) and ~beq,~)(., .) is 
the map from ~ • ~ to ( ~  | F) (2) defined by 

qb(~,~)(x, y) = ,q | (x - y)~, x, y ~ 

Then, ( ~  | F)I2~!~) is a Hilbert subspace of  (,~ | F) (~) and the map ~P(~,~)(., .) is 
a global C~-system for the pair (~ ,  (,9t | F)I~!~)) over ,~, in the terminology 
of Browder (1976). 

3.3. Notions of Monotonicity 

The notions of monotonicity employed in this paper are introduced 
as follows. 

Definition 3.3. A regular multifunction g': ~ ---> 2 Sesq((D-~ will be 
called: 

(i) monotone if for any ordered pair (~, 6) e (D @ E) 2, with ~q = 
u | e(o0, ~ = v | e([3), ~, [3 E L~,Joc(R+), u, v ~ D, the 
multifunction x ~ ~ ( x ) ( ~  | zl) from ~ to 2(!~| is ~P<~ ~)- 
monotone in the sense of  Browder (1976), i.e., if 

Re(((a - b)(~ | "q), ~(~,~)(x, Y))(2)) --- 0 

whenever a E ~ ( x ) ,  b ~ ~ ( y ) ,  and x, y ~ .~, where 
Re(-.-)  denotes the real part of (- ..); 

(ii) maximal monotone if ~ is monotone and for any ordered pair 
(~q, 6) in (D @ E) 2, with ~q = u | e(c0, ~ = v | e([3), c~, [3 
L~,Io~(R+), u. v ~ D, the multifunction x ~ ~,~,~(x)(~ | "q) from 

to 2(!~| is maximal ~(~,~)-monotone in the sense of Browder 
(1976), i.e., if the graph of  the multifunction x ~ @ ~ ( x ) ( ~  | 
~) is not properly contained in the graph of any other mono- 
tone multifunction; 

(iii) hypermaximal monotone if ~ is monotone and for arbitrary eL, 
L~,lo~(R+), there is a single-valued monotone map K ~  from 

to ( ~  ~ ~ ) ~  such that the multifunction x ~ ~ ( x )  from 
into 2(~-~)~ satisfies the following two conditions: (a) the range 
of K ~  + ~ is all of ( ~  @ ~ ) ~ ;  and (b) ( K ~  + ~ ) - 1  is 
a continuous single-valued map from ( ~  @ ~ ) ~  to ~ .  

Remark. 1. The multifunctions encountered in the subsequent discussion 
are in general regular maps ~ :  R+ • ~ --> 2 sesq((~-~)(~)). These will be called 
monotone [resp. maximal monotone; resp. hypermaximal monotone] if the 
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multifunction x ~ @(t, x), x �9 M, is monotone [resp. maximal monotone; 
resp. hypermaximal monotone] for each t �9 R+. 

2. In addition to the weak topology "r~ already introduced, we shall also 
consider the strong topology % on ~/. This is the locally convex topology 
whose family {ll'lle: ~ �9 D @ s ]  of seminorrns is specified by 

Ilxlle = IIx~ll, x �9 ~ ,  ~ �9 13 ~ ~. 

3. In what follows, we prove two results involving the above notions 
of monotonicity. Analogs of these results are well known in the context of 
Banach spaces (Browder, 1976). 

Proposition 3.4. Let g~ be a regular multifunction from ~/ into 
2 sesq((I)~-E)(2)) and a,  p ~ L-Taoc(R+). Then: 

(i) The multifunction ~ has convex and %-closed values in 
2(~_~)~. 

(ii)(a) I f x  e M, a �9 (M @__ ~ ) ~ ,  {x~: B �9 A} is a net that %-converges 
to x, as �9 g~,~(x~),  and the net {as: B �9 A} ,rw-COnverges to a, then a 
�9 ~ ( x ) .  

(ii)(b) If ~ is of the form ~' = P | 1, x �9 M, a �9 ~ | 1, {x~: B e 
A} is a net that "rw-converges to x, as �9 ~/'~,~a(x~), and the net {as: B �9 A} 
"rw-converges to a, then a e ~,~a~(x). 

Proof. (i) By the definition of a maximal monotone multifunction, a 
lies in ~ ( x )  iff 

Re(((a - b)(~ | "q), dP(.q4)(x, Y))(2)) >-- 0 

for all (-q, ~) in (D ~ Eft, with "q = u | e(a), ~ = v | e([3), u, v �9 I3, and 
all (y, b) �9 M x ( ~ / ~  ,~),~ with b �9 @,~,~(y). As the set 

~ , y o ( X )  = {a e ( ~ / ~  M),~: Re(((a - b)(~ ~ "q), @(~4)(x, y))(~)) >- 0 

V(~, ~) e (D ~ E) z, with 

"q = u |  = v |  �9 D} 

is convex and "rw-closed, and 

g~,~,~(x) = rh{~,~,~,yb(X): (y, b) �9 M X (M ~ ~) ,~  with b �9 g ~ ( y ) }  

it follows that ~,~,~(x) is also convex and "rw-closed. 
(ii)(a) By the monotonicity of @, if (y, b) e ~/ X (M ~ ~),~,  with b 

�9 @, ,~(y) ,  then 

Re(((a~ - b)(~ | ~q), ~(,14)(x~, Y))(2)) >- 0 (*) 
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for each ~ e A and all pairs (x I, O e (D @._@_ E) 2, with "q = u | e(a), ~ = 
v | e([3), u, v ~ D. By the definition of ~(,,o(' ,  "), the net {q~(n,o(x~, y): 

A} converges in ( ~  @ F) (~) to qb(n,o(x, y) whenever the net {x~: g ~ A} 
%-converges to x e N. Furthermore, the net {a~ - b: g e A} "rw-COnverges 
to a - b in ~ @ ~ whenever the net {as: g e A} %-converges to a in 

@ ~ .  Hence, taking limits in (*) gives 

Re(((a - b)(~ | xl), ~(n.o(x, Y))(2)) >- 0 

for all (qq, {) e (D @ s with qq = u | e(o0, { = v | e([3), u, v e D. By 
the maximal monotone nature of ~', it follows that a e ~ ' ~ ( x ) .  

(ii)(b) The proof is essentially as in (ii)(a), noting that as @ = P | 1, 
the set @ ~ ( x ) ,  x e M, has the form ~ , ~ ( x )  = P,~(x) | 1, x e ~ .  Hence, 
if as e P,~(x~) | 1 and (y,b) e ~ • (a~ | 1), with b e P~(y)  | 1, then 
there are 8~ ~ P~(x~) and b e P,~(y) such that a = 8~ | I and b = /~ | 
1. Hence (*) above reduces to 

Re((((a~ - b) @ 1)(~ | ,q), O(~,o(x s, Y))(2)) 
= Re(((a~ -/~)~, ~q)(~q, (x~ - Y)0) 

The assertion is deduced from this. 
This concludes the proof. [] 

Theorem 3.5. A regular, hypermaximal monotone multifunction 

0~: 5~ ~ 2 sesq((D~E)(2)) 

ismaximal monotone. 

Proof The following proof extends the main arguments of Theorem 3.9 
in Browder (1976) to the present setting. 

Let ~ | ~1 ~ (D @ E) 2, with "q = u | e(o0, ~ = v | e([3), a, [3 
L~.lo~(R+),u, v e D. The claim will be established by showing that whenever 
(y, b) e ~/ • ( ~  ~ s~)~ and 

Re(((a - b)(~ | ~1), ~(~,0( x, Y))(2)) - 0 

for all (x, a) e ~ • (.~ @ ~)~3, with a E @~6~6(x), then b e @~,~6(y). 
As @ is hyp_ermax_imal monotone, there is a monotone single-valued 

map_ K~p: ~ --> (s~ @ s~),~ such that the range of K~6 + @ ~ 6  is all of (sg 
s~),~ and (K~p + @~,~)-1 is a continuous single-valued map from ( ~  

s~)~ to sO. By the monotonicity of K,~3, 

Re(((K~,~(x) - Kc,~(y))(~ | "q), qb(n,o(x, Y))(2)) -> 0 
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Adding the last two inequalities gives 

Re(((a + K ~ ( x )  - b - K~,~(y))(~ | "q), ~b(~,~(x, Y))(2~) -> 0 (3.1) 

Let c be a fixed but otherwise arbitrary member of ( ~  @__ ~ ) ~  and t 
E (0, 1). Define dt and xt by 

d, = b + K,~(y) + tc 

xt = (K,~ + ~ , ~ ) - l ( d , )  

Then, dt e K~,~(xt) + ~,~,~(xt) ,  whence 

d, = K,~(xt) + qt for some qt ~ )~,~,~(xt) (3.2) 

Replacing the pair (x, a) in (3.1) by (xt, qt) and using (3.2), one gets 

Re((c(~ | "q), 4~(n,el(xt, Y))(2)) ~ 0, V(a], ~) e (D @ E) 2 (3.3) 

When t $ 0, dt %-converges to b + K,~(y) in ( ~  ~ s~)~. By the hypermaximal 
monotonicity of ~P, the map (K~ + ~ ) -  1 is continuous from ( ~  @_@_ .~/)~ 
to s~. Hence, xt = (K~  + ~ ) - l ( d t )  converges to (K~  + ~ ) - l ( b  + 
K~,~(y)) -- xo in s~ as t $ 0. Since c can be represented as a finite sum c = 
"Zj Clj | czj, one sees that 

I<c(  | n, Y))(z) - (c(~ | "q, ~(.~,~(Xo, Y))(z)I 
E [(Clj ~' ~q)[ I(C2j q[]' ( x t  - -  x0) >l 
J 

Hence, allowing t $ 0 in (3.3) gives 

Re((c(~ | Xl), qb(n,~)(x0, Y))(z)) >- O, V(x I, ~) e (D @ E) a (3.4) 

Since c is arbitrary, replacing c by - c  does not change the inequality in 
(3.4). Hence 

Re((c(~ | "q), dP(,~,~)(x0, Y))(e)) = 0, V('q, ~) e (D @__ E) z (3.5) 

Analogously, replacing c in (3.4) by ic or - i c  (with i = , / - ~ )  does not 
change the inequality in (3.4). Since (., ")(2) is conjugate-linear on the left, 
it follows that 

Im((c(~ | "q), ~(n,~)(Xo, Y))(2)) = 0, V('q, ~) e (D @ E) 2 (3.6) 

where Im(. .  -) denotes the imaginary part of ( "  "). Hence, from (3.5) and (3.6), 

(c(~ | "q), qb(~,e~(Xo, Y))(2~ = 0 

for all ('q, ~) ~ (D @ E) 2 and arbitrary c in ( ~  @ ~ ) ~ ,  whence dO(,~,~(Xo, 
y) = 0 for all ('q, 6) e (D @ E) ~, since (s~ @ s~)~ contains 1 | 1. This is 
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equivalent to "q | (x0 - y)~ = 0 for all (-q, ~) E (D @ E) 2, whence x0 = y. 
Hence, y = (K~  + ~ff~c43c43)-l(b + Kaf3(y ) )  , whence b + K,~(y) ~ K,,~(y) + 
@ ~ ( y ) ,  thereby forcing b e @ ~ ( y ) .  This concludes the proof, m 

3.4. The Class Hypmax(R~ x ~ )  

Let id~ be the identity map on ~ .  Then, the single-valued map 

defined by 

idA(.) | i: ,~ --> ,~ @ i 

x ~ idA(x)|  1 = x |  1, x ~ 

is monotone since 

((idA(x) @ 2 - idA(y) | 1)(~ @ "q), q~(,~4)(x, Y))(2) = Ilx - yll2,~ 

for allx,  y E s~, "q, ~ e D @ E .  
In our discussion of quantum stochastic differential inclusions in Section 

5, the relevant class of multifunctions is defined as follows. 

Definition 3.6. The class Hypmax(R+ X ~ )  is the set of all regular 
multifunctions ~ :  R+ X ~ ---> 2sem((D-- ~E)(zb with the following properties: 

(i) Relative to the representation of ~ in Definition 3.1, the multifunc- 
tion ~ is, for arbitrary a, [3 E L,7,Io~(R+), given by 

~ ( t ,  x) = P~(t, x) | i, (t, x) ~ R+ X ~ (3.7) 

for some multifunction P~a: R+ X s~ --~ 2 ~, with range contained 
in a unital subspace s~,~ of s~. 

(ii) ~ is hypermaximal monotone, with its associated monotone, contin- 
uous, single-valued map K,,~ in Definition 3.3(iii) given by 

K~(x) = ids?(x) | 1, x E s~ (3.8) 

for all a, [3 e L,~.lor 

4. RESOLVENT AND YOSIDA APPROXIMATION 

Let ~ ~ Hypmax(1L, X ~/). Then, by equation (3.7), for o~, 13 
L~.lo~(R+), 

@ ~ ( t ,  x) = P~(t, x) | 1, (t, x) ~ R+ • 
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As ~ is hypermaximal monotone, the multifunction 

x ~ ida(x) |  1 + X(P~(t, x ) |  ~), x E 

is a surjection onto ~,,~ | 1 for each t e R+, X > 0; moreover, the map 

(ida(') | 1 + X(P~(t, .) | 1)) -1 

is both single-valued and continuous from ~ | 1 to ,~/, for each t e tL~, 
all X > 0, and ~, [3 ~ L,~:o~(1L-). As 

ida(x) | 1 + h(P,,~(t, x ) |  1) = (ida(x) + XP~(t,  x ) ) |  1 

(t, x) e 1L_ X ~ ,  it follows that the multifunction x ~ ida(x) + XP~,~(t, x), 
x e ~ ,  is a surjection onto ~ for each t E R+; moreover, the map (ida(') 
+ hP~f~(t, .))-1 is both single-valued and continuous from ~,,~ to ~ ,  for 
each t e R+, all h > 0, and all cx, 13 e L~.loc(R+). 

We introduce the following maps: 

Jx,~f~(t, ") = (ida(') + XP~,f~(t, .))-1 

1 
Px,~f~(t, ") = ~ (ida(-) - Jx,~f~(t, ")) 

t e R+, h > 0, and a, [3 e L~:oc(IL-). These are single-valued maps. They 
give rise to the quadratic forms Jx(t, x) and Px(t, x), (t, x) e 2L~ X ~ ,  defined 
as follows: 

J• x)('q, ~) = (qq, Jx,~f~(t, x)~) 

Px(t, x)('q, ~) = ('q, Px,~(t, x)~) 

k > 0 , ( t , x )  e K ~ X ~ , ~ q , ~  e D ~ E ,  with'q = u |  
a, [3 e L,~.loo(2L~), u, v e D. 

In terms of the maps just introduced, we define :~ and @x by 

o~(t, x) = J~(t, x) | 

~P• x) = Px(t, x) | 

X > 0, (t,x) e ~ x ~ .  
The single-valued map Jx [resp. :x]  will be called the resolvent of the 

multifunction P [resp. @] and the single-valued map Px [resp. ~x] will be 
called the Yosida approximation of the multifunction P [resp. ~P]. 

Remark. 1. A number of the properties of the maps Jx and Px that are 
employed below in the proof of Theorem 5.6 are described in this section. 
To this end, we shall use the following facts. 
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2. If ~{ is a closed convex subset of ~ | F, then the projector of best 
approximation p~c of 91 Q F onto ~{ is characterized by 

I1• - p~(x) l l  = i n f l l x  - 011, x �9 9l  | F 
0~2g 

It follows that p~t(0) is the member of ~{ with the least norm. Define mO{) by 

mO{) = p~t(O) 

When ~{ = {• a singleton, then clearly mO{) = Xo. 
3. For ~ �9 D ~ E, c~, [3 �9 U~,loc(R+), (t, x) �9 R+ / ~ ,  and 0 ~ �9 

Hypmax(R+ / .~), it follows from Proposition 3.4(i) that P~,f~(t, x)~ is a 
closed convex subset of 91 | F, and m(P~f~(t, x )O lies in P~( t ,  x)~. This 
gives rise to a map m~f~(t, x) from the set D ~ E to 9] | F defined by 

m~(t ,  x)~ = m(P~( t ,  x)O, ~ �9 D ~ E 

As m(P~( t ,  x)O lies in P~f~(t, x)~ and every member of P~f~(t, x)~ is of the 
form z~, for some z �9 P~f~(t, x), the map m~,f~(t, x) may be identified with a 
member of P~(t ,  x). 

Theorem 4.1. Let ~ �9 Hypmax(tL_ • ~ ) ,  X > 0, and c~, [3 �9 
L~c, loc(tL~). Then: 

l(i) For each t �9 2L~, the map x ~ J• x), x �9 ~ ,  is Lipschitzian 
with Lipschitz constant 1; (ii) for each t �9 ~ ,  the map x ~ Px,~f~(t, x), x �9 
.~/, is Lipschitzian with Lipschitz constant l /h; (iii) Px(t, x)Oq, ~) �9 P(t, 
Jx,~f~(t, x))Oq, O, for all (t, x) e R+ • .~/, -q, ~ �9 D ~ E, with "q = u | 
e(a), { = v | e([3), a, [3 �9 L,~.loc(2L-), u, v �9 D; and (iv) for each h > 0, 
the map ~x = Px | 1 is monotone. 

2. For arbitrary -q, { �9 D ~ E and (t, x) �9 R+ • .~/, 

I lex,~( t ,  x) - m=f~(t, x)lt2~ -- IIm=~(t, x)l12~ - Ilex,=~(t, x)ll~4 

3. As h $ O, Jx(t, x)('q, ~) converges to ('q, x~) for arbitrary "q, ~ �9 D 
@ E a n d ( t , x )  �9 R+ x s~. 

Proof  l(i) + (ii): Let t �9 R+, X > 0, a,  13 �9 L~,to~(R+). As x ~ Jx.,~(t, 
x), x �9 s~, is surjective for each t �9 R+, then given yj �9 ~ ,  j = 1, 2, 
the inclusions 

yj e xj + hP~f~(t, xj), j = 1, 2 

can be solved for x i e ~ ,  j = 1, 2. Hence, there exist vj �9 P~( t ,  xi), j = 
1, 2, such that 

yj = x/ + Xvj, j =  1 ,2  
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whence 

]]Ya - yzllZ~,e = Ilxt - xzll~,~ + x211v~ - vzll~,~ 

+ 2~. Re((((v~ - v2) | 1)(~ | "q), qb(n,e)(xI, X2))(2) ) 

- I I x ,  - x2112~,~ + X21lva - v211~,~ 

for all ~, ~ ~ ]3 ~ E, with "q = u | e(ct), ~ = v | e([3), a,  13 
L.~,loc(R+), u, v ~ D, since ~ is monotone.  Hence 

showing that for each t ~ 1L~, the map x ~ Jx ,~( t ,  x), x ~ .~, is Lipschitzian 
with Lipschitz constant l, and 

1 
]]v~ - v~]],,~ ~ ~ ]]y~ - Y2]]~,~, V'q, ~ e D _~ E 

showing that for each t ~ P~, the map x ~ Px,~,~s(t, x), x ~ ~ ,  is Lipschitzian 
with Lipschitz constant l /k.  

(iii) By the definitions of J• and Pxx4s, one gets 

1 
Px,~(t, x) = ~ [x - Jx.~p(t, x)] 

1 1 
[Jx,~,~(t, x) + XP~(t ,  Jx,.f~(t, x))] - ~ Jx,~(t ,  x) 

P~p(t, Jx,~p(t, x)) 

E 

whence 

Px(t,  x)("q, ~) E P(t,  Jx ,~( t ,  x))(rl ,  ~) 

for all (t, x) E R+ X ~ ,  -q, ~ ~ D ~ E, wi th 'q  = u | e(o0, ~ = v | e([3), 
ct, [3 e L~,loc(R+), u, v E D. 

(iv) To show that for each k > 0, the single-valued map 

~ x = P x |  R + X , ~ s e s q ( ( D ~ E )  (2)) 

is monotone ,  let Xl, x2 ~ ~/, a ,  [3 E L,~,loc(1L~), and 0% ~) E (D ~ E) 2. Using 

xj = Jx,~f~(t, xj) + hPx,~f~(t, xj), t ~ R+, j = 1, 2 

we get 

Re((((Px,~(t, xO - Px,~f~(t, X2)) @ l)(~ @ "q), (I)(.q,~)(Xl, X2))(2) ) 

= Re((((Px,~(t, xt)  - P• x2)) | 1)(~ | "q), ~(~.r xl) ,  
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Jx,,~(t, x2)))(2)) 

+ X Re((((P~,~(t, Xl) - Px,~fs(t, xz))  | 1)(~ | "q), qb(n,~)(Px,~(t , x0, 

P• xz)))(z)) 

= Re((((Px,~ls(t, Xl) - Px,~,~(t, x2)) | I)(~ | "q), ~(n,~)(J• Xl), 

Jx,~f~(t, x2)))(2)) 

+ MIPx,.~(t, xl)  - Px,~6(t, x2)ll~,~ 

o, since Px,~6(t, xj) ~ P ~ ( t ,  J~,~(t ,  xj)), j = 1, 2 

showing that the single-valued map @x = P• @ 1: R+ • .~ -~ sesq((D @ 
E) (2)) is monotone ,  as claimed. 

2. Le t ( t , x )  e R + •  6 e D @ E .  Then 

IlPx,~(t, x) - m~6(t, x)ll2~ 

= Ilm,~(t, x)ll2e - [IPx,~(t, x)ll~,e 
- 2 Re(((m,~(t, x) - Px ,~ ( t ,  x))6,  xl)(xl, Px,~f~(t, x)~)) 

-- Ilm~,~(t, x)ll~,e - [IPx,=~(t, x)ll2,e 

- 2 Re((((m~(t, x) - Px,~(t, x)) | 1)(6 | "q), "q | Px,~f~(t, x)6)(2)) 

Now, as m~f~(t, x)  ~ P~f~(t, x),  Px,~(t, x) ~ P~f~(t, Jx,~f~(t, x)),  Px,~fs(t, x) = 
(1/k)(x - Jx,~(t, x)), and ~ is mono tone ,  it follows that 

Re((((m~(t, x) - Px,~f3(t, x)) | 1)(6 | "q), "q | Px,~fs(t, x)6)(2)) 

Re((((m~(t, x) - Px,~f~(t, x)) | 1)(6 | "q), ~q | (x - Jx,~fs(t, x))6)(z)) =! 
k 

1 

k 

~ 0  

Hence 

Re((((m~l~(t, x) - Px,~f~(t, x)) | i)(~ | rl), qb(n,r Jx,~f~(t, x)))(2)) 

IIPx,~(t, x) - m ~ ( t ,  x)ll2~ ~ Ilm~,~(t, x)ll~s - IlPx,~(t, x)ll2~ 
with the corollary that 

]lP• x)ll~,e -< [ ] m ~ ( t ,  x)l ln,~ 

for all k > 0, ct, [3 ~ L~,loo(R+), ~l, ~ e D @ E, (t, x) ~ 1L X .(l. 
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3. As 

IIx - Jx,~f~(t, x)ll~,e = Xlle~,~(t, x)ll~,~ - Xllm=~(t, x)ll~,~ 

it follows that Jx(t, x).('q, ~) converges to ('q, x~) as h .], 0 for all -q, ~ ~ D 
@@E, (t,x) e R+ X .~. 

This concludes the proof. �9 

5. H Y P E R M A X I M A L  M O N O T O N E  INCLUSIONS 

Let a(f), a+(g), and h(xr) be the annihilation, creation, and gauge opera- 
tors of quantum field theory associated with f, g ~ L~(2L~) and xr E 
L~(y),loc(1L~) (Hudson and Parthasarathy, 1984). [Throughout, the triple (f, g, 
rr) is assumed fixed.] Then define Af(t), A~(t), and A~(t) by 

Af(t) = a(fxt0,t)) | I t 

A-~(t) = a(gX[o,o) | 1 t 

A.~(t) = h(~rXto,t) ) | 1 t 

t ~ R+, where • is the indicator function of the Borel set I C R+. The maps 
Af, A~, and A~ from R+ to ~ are evidently adapted to the filtration {s~/: t 
e 2L-} o f ~ .  

Let p, q, u, v e L~oc(~ ), f, g e L~,lo~(K~ ), and ar e LB~y),Ioc(R+). In the 
sequel, we interpret the stochastic integral 

I ' (p(s) q(s) dAf(s) dA-~(s) v(s) ds) dA~(s) + + U(S) + 
to 

(to, t) ~ R2+ with to < t, as in Hudson and Parthasarathy (1984). 

5.1. Stochastic Inclusions 

A map ~:  K~ ~ 2 ~, with closed values, will be called a multivalued 
stochastic process  indexed by R+. Such a process is adapted (to the filtration 
{s~t: t ~ R+} of s~) in case q~(t) C_ a t ,  for each t E R+. When dp is adapted 
and the map t ~ II@(t)lln,e, t e 1% [see p. 2006 of Ekhaguere (1992) for the 
definition of II~tll~,e for ~t _ s~], is in L~oc(R+) for all nq, ~ E D ~ E, then 

is called locally absolutely square integrable. The notation L12oc(~)mvs 
denotes the set of all locally absolutely square-integrable multivalued stochas- 
tic processes on R+, and we write L{oc(R+ • S~)mvs for the set of all multifunc- 
tions ~:  R+ • s~ ~ 2 ~, with closed values, such that the map t ~ alp(t, X(t)), 
t ~ R+, is in L2oc(~)mvs for every X e L~oc(.~). 

For dp ~ L~oc(R+ • S~)mvs, let 
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L2(~) ------- {q~ e L~oc(R+ • ~):  q~ is a selection of qb} 

Then, if qb e L{oc(R+ • ~/)mv~, X e L~oc(S~) and M denotes any of the 
stochastic processes Af, A~-, A~ and s ~ sl,  s e R+, we define the stochastic 
integral of dO(., X(.)) with respect to M by 

f } �9 (s, X(s)) dM(s) =- q~(s, X(s)) dM(s): q~ ~ L2(qb) 
tO 0 

to, t e R+. This leads to the notion of a quantum stochastic integral [resp. 
differential] inclusion, as introduced in Ekhaguere (1992). 

In the sequel, E, F, G, H lie in L{oc(R+ • S~)mv.~ and we are concerned 
with the following initial value stochastic differential inclusion: 

dX(t) e - (E(t ,  X(t)) dA~(t) + f(t ,  X(t)) dAs(t ) + G(t, X(t)) dA~(t) 

+ H(t, X(t)) dt), almost all t e R+ (5.1)0 

X(0) = x0 for some xo e 

This inclusion may be recast as follows. For or, 13 e L-~,loc(R), define the 
multifunction P ~ :  R+ • ~ --* 2 a by 

P~(t ,  x) = ~ ( t ) E ( t ,  x) + v~(t)F(t, x) + cr~(t)G(t, x) + H(t, x) 

where Ix~(t) .= (e~(t), -rr(t)p(t))y, v~(t) = (f(t), 13(t))v, and %(t) = (o~(t), 
g(/))u (t, x) E R+ X ~ ,  and (', ")y is the inner product of the Hilbert space 
Y. This gives rise to the multifunction 

P: R+ X ,.~ ~ 2 sesq(D~E) 

defined by 

P(t, x)(rl, ~) = (~q, P~,~(t, x)~) = {('q, p~f~(t, x)~): p~(t ,  x) e P~(t ,  x)} 
(5.2) 

(t ,x) E tG • ~ , ~ , ~  E D @ E ,  with'q = u |  = v |  13 
e L,~,~oc(R+), u, v E D. Then, by Theorem 6.2 of Ekhaguere (1992), the initial 
value stochastic differential inclusion (5.1)o is equivalent to the following 
initial value nonclassical differential inclusion: 

d 
dt ('q' X(t)~) E -P( t ,  X(t))('q, ~), almost all t E R+ (5.1)p 

X(0)  = Xo e 

for arbitrary (11, ~) ~ (D @ •)2 



340 Ekhaguere 

Definition 5.1. A map q~: R+ ~ ~ / i s  a solution of Problem (5.1)0 if it 
is weakly absolutely continuous and 

dq~(t) E -(E(t ,  q~(t)) dA.~(t) + F(t, q~(t)) dAy(t) + G(t, q~(t)) dAg(t) 

+ H(t, q~(t))dt), almost all t ~ 1L~ 

~(0)  = x 0  ~ 

Remark. 1. For accounts of the theory of classical differential inclusions, 
see Aubin and Cellina (1984), Deimling (1992), and Kisielewicz (1991). 

2. Notice that Problem (5.1)p presents Problem (5.1)o as a nonclassical 
differential inclusion of nonlinear evolution type. 

3. The subsequent discussion is concerned with the problem of the 
existence and uniqueness of a solution of Problem (5.1)0 [or equivalently 
Problem (5.1)e], under a monotonicity condition on P. 

Definition 5.2. Problem (5.1)0 will be said to be of hypermaximal mono- 
tone type if the multifunction P in (5.1)0 is such that ~ = P | 1 lies in 
Hypmax(lL. x ~) .  Similarly, Problem (5.1)0 is Lipschitzian if P is Lipschit- 
zian, as explained in Ekhaguere (1992). 

Remark. 1. In Eldaaguere (1992) we established the existence of a solution 
of a Lipschitzian stochastic differential inclusion, and proved a relaxation 
theorem giving the relationship between the solutions of such an inclusion 
and those of its convexification. 

2. The main result of this section is Theorem 5.6. It establishes the 
existence of a unique adapted solution of a stochastic differential inclusion 
of hypermaximal monotone type. This solution is arrived at by a limiting 
process involving the unique adapted solutions of a one-parameter family of 
Lipschitzian stochastic differential equations. We shall first introduce these 
equations. 

5.2. The Approximating Lipschitzian Equations 

Let P in (5.1)p be such that ~ = P | 1 is in H y p m a x ( ~  X ~) .  Let 
(t, x) E R+ X ~ ,  h > 0, and eq [3 ~ L~,loc(R). Using 

P~(t ,  x) = tx~(t)E(t, x) + v~(t)F(t, x) + cr~(t)G(t, x) + H(t, x) 

we have 

P~(t ,  J• x)) = ~z~(t)E(t, Jx,~(t, x)) + v~(t)F(t, Jx,~(t, x)) 

+ cr~(t)G(t, Jx,~(t, x)) + H(t, Jx,~(t, x)) 

Then, since P• x) E P~(t ,  Jx,~(t, x)) by Theorem 4. l(1)(iii), it follows 
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that there are Ex,~(t, x) e E(t, Jx,~(t, x)), Fx,~6(t, x) e F(t, J• x)), Gx,.~(t, 
x) e G(t, Jx.~6(t, x)), and Hx,~(t, x) ~ H(t, Jx,~6(t, x)) such that 

Px,~6(t, x) = IX~(t)Ex,~6(t, x) + v6(t)Fx,~6(t, x) 
+ ~r~(t)Gx,~6(t, x) + Hxx, p(t, x) 

For Q e {P, E, F, G, H}, define the quadratic form Qx(t, x) by 

Qx(t, x)('q, ~) = ('q, Ox,~p(t, x)~) 

for "q, ~ ~ D Q E, with "q = u Q e(e0, ~ = v | e([3), oL, [3 E L~,lo~(R+), u, 
v e D, and introduce the initial value stochastic differential equation: 

dXx(t) = -(Ea(t, Xx(t)) dAb(t) + Fx(t, Xx(t)) dAy(t) + Gx(t, Xx(t)) dAg(t) 

+ H~(t, Xx(t)) dt), almost all t e R+ (5.1)x 

X~(0) = x0 E d/  

This equation is equivalent to the initial value differential equation 

d 
dt (~q' Xa(t)~) = -Px(t,  Xx(t))('q, ~), almost all t e 2{+ (5.1)p~ 

X~(0) = Xo E 

for all ('q, ~) e (D @ E) 2, where Px, h > 0, is the Yosida approximation of 
P described in Section 4. 

As Px is Lipschitzian for each h > 0, Problem (5.1)~ has a unique adapted 
solution which is arrived at by Picard's method of successive approximation. 

5~ The Main Result 

Throughout the rest of the discussion, we assume that Problem (5.1)0, 
or equivalently Problem (5.1)p, is of  hypermaximal monotone type. 

Notation. Let I = [To, T), with T > To >- 0. Then, C(I, ~ )  is the locally 
convex space of maps: q0: I ~ ,~ whose topology is generated by the family 
{ ][" ]]co.,~: ~q, ~ e D ~ E } of seminorms defined by 

I[~Pllcon,~e = supll~p(t)ll~,e, ~O, ~ ~ D @ E 
t e l  

We shall show that for each compact subinterval I _C tL_, a solution of 
Problem (5.1)x converges in C(I, ~ )  to a solution of Problem (5.1)0 as h $ 
0. This will be done in stages as follows. 
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Proposition 5.3. I f  q01 and qo2 are two solutions of  Problem (5.1)o satis- 
fying qh(0) = xlo and tp2(0) = X2o, for  some  Xlo, x20 �9 -~, then 

II~t(t) - ~z(t)ll~.e -< Ilxlo - xaolln,~ 
for all t �9 R+, "q, ~ �9 D ~ E .  

Proof  Let q~ denote either qol or q~z- As q~ is a solution of  Problem (5.1)o, 
there are single-valued maps toE, tOF, too, tOH of  IL~ • ~ into ~ such that 
toe(t, x) �9 E(t, x), tor(t, X) �9 F(t, x), to6(t, x) �9 G(t, x), toI4(t, x) �9 H(t, x), 
(t, x) e R+ X :~, and 

dq~(t) = -( toe( t ,  q0(t)) dA~(t) + toF(t, q~(t)) dAy(t) + toe(t, q~(t)) dA{(t)  

+ ton(t, q~(t)) dt), almost  all t �9 R+ 

Then, for "q, ~ ~ D ~ t~, with "q = u | e(a) ,  ~ = v | e([3), a ,  [3 �9 
L~,~oc(l~.), u, v �9 D, we have 

dllqh(t) - ~2(t)11~4 
= - 2  Re((((dqh(t) - dtP2(t)) | ~)(~ | "q), ~(n,o(qh(t), q~2(t)))(2)) dt 

= - 2  Re ( ( ( (p~( t ,  qh(t)) - p~,~(t, q~z(t))) | 1)(6 | ~q), 

O(~4)(q~l(t), q~2(t)))(z)) dt 

where 

p~,~(t, q~(t)) = ~f~(t)toE(t, q~(t)) + v~(t)toF(t, q~(t)) 

+ cr~(t)toc(t, q~(t)) + ton(t, q~(t)) 

t E 2L.. A s  p~f~(t, q~(t)) e P ~ ( t ,  q~(t)), t e R+, and ~ = P | 1 is monotone, 
it follows that 

dllqh(t) - q~2(t)l124 -< 0 

for a l l t  e R+,x  I ,~  �9 D ~ E ,  whence  

II ,(t) - - = IIx,0 -x2011 ,  

for all t e 2L_, "q, ~ �9 E) ~ E. This  concludes  the proof.  �9 

Remark. We have  seen in T h e o r e m  4.1(1)(i) that the resolvent Jx of  P 
has the property that x ~ Jx,,~(t, x), x e ,~, is Lipschitzian, with Lipschitz 
constant 1, for each t �9 2L~, X > 0, and c~, [3 �9 L~,loc(K0. To discuss the 
convergence of  the net {q~x: X > 0} to a solution of  Problem (5.1)o, where 
q~• is a solution of  Problem (5.1)x, we  require a continuity condition on the 
single-valued map t ~ J• x), t e 2L~, for  arbitrary x �9 ~/, X > 0, and 
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c~, [3 ~ L~,loc(P~,). Under the continuity condition, we first establish a priori 
bounds on II~(t)ll~,~ and I(d/dt)('q, q~• that are independent of k, for 
each t ~ g+ and "q, 6 E D _@@ E. Since we are interested in the limit as 
k $ 0, we can restrict k to the interval (0, I], as we do below. 

Proposition 5.4. Let )~ ~ (0, 1], q~x a solution of (5.1)x, (t, x) E g+ X 
~ ,  and s > 0. Suppose that there are a monotone increasing function g/: X+ 
- '  R+ and a collection {c~: "q, ~ ~ D @ E} of  continuous functions from 
R+ --, R+ such that 

IIJh,Mt + s, x) - Jx,~f~(t, x)ll,~,~ -- kc~(t)s(llJx,~(t, x)ll~,~ + 'I'(llxl[~,0) 

for all "q, 6 c D @ E with "q = u @ e(a), 6 = v @ e([3), a,  [3 E 
L~,loc(]L-), u, v ~ D. 

Then, for arbitrary "q, 6 e D | E, there are continuous functions v(~) _ ,~-q~, 

k~2~: R+ ~ R+, independent of  k E (0, 1], such that the following estimates hold: 

(i) II~(t)lln,~ -< k~(t), for all h ~ (0, 1], t E IL. 
(ii) ](d/dt){Xl, q~x(t)6}l --- k~(t), for all t ~ R+, k ~ (0, 1]. 

Proof The estimates employ Gronwall 's  inequality (Walter, 1964). 
(i) We have 

~t II~x(t) - xoll~,~ 

= - 2  Re((((Px,,~(t, q~x(t))) | ])(~ | "q), ~(~,~)(q~x(t), Xo))(2)) 

= - 2  Re((((Px.~(t, q~a(t)) - ex,~,p(t, Xo)) Q ])(~ Q "q), dP(~,~)(tpx(t), X0))(2)) 
- 2  Re(((Px.~(t, x0) | ])(6 | "q), @(n,t)(q~x(t), Xo))(:)) 

----- - 2  Re(((Px.~ts(t, Xo) | ])(6 | "q), ~.~)(qza(t), Xo))(z)) 

as ~ = P• | ] is monotone,  by Theorem 4.1(1)(iv). 
But 

- 2  Re(((Px,~f~(t, Xo) | i)(6 | Xl), ~r Xo))(z)) 

--- 2j ({(Px,~(t, Xo) | 1)(6 | "q), qb(n.~)(q~• X0))(2))[ 

= 21{P~,~(t, XoK, "q) l'l{'q, (q~x(t) - Xo)6)l 

= 211ex,~(t, xo)ll~,~ll~x - xoll~,~ 

- 21lm~(t,  xo)ll~,~ilq~ - xolh~,e 

[by Theorem 4.1 (2)] 

- I lm~(t,  xo)ll~,~ + I1~  - xoll~,e 
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Hence 

d 
dt  II~ox(t) - xoll2,e ~ IIm=~(t, xo)llZ,~ + I1~o• - xoll~,r 

Ekhaguere 

whence, by Gronwall 's  inequality, we have 

II~x(t) - xoll~,~ - /6~ 

where k~~ R+ ~ R+ is a continuous function, independent of  h. Hence,  
II~x(t)ll,,,~ -< k~(t), with k~l~(t) = Ilxoll~,e + /6~  for each t ~ R+ and all 
X e (0, 11. 

(ii) Let t, s E R+, h ~ (0, 1]. Then 

d 
dt II~x(t + s) - ~x(t)ll2,~ 

= - 2  Re((((Px,,~(t + s, qOx(t + s)) - Px,~(t ,  q~x(t))) | 1)(~ | "q), 

qb~,~)(qox(t + s), q~x(t)))(2)) 

= - 2  Re((((Px,~( t  + s, tpx(t + s)) - Px,~( t  + s, q~x(t))) | 1)(~ | qq), 

r + s), ~x(t)))~2p 

- 2  Re({((Px,~(t  + s, r - -  Px,~f~(t, q~x(t))) | 1)(~ | "q), 

dP~,~)(~ox(t + s), q~x(t)))(2)) 

---< - 2  Re((((Px,~( t  + s, q~x(t)) - Px,~f~(t, qox(t))) | 1)(~ | ~]), 

qb(n,~)(q~x(t + s), qOx(t)))(z)) 

[since ~Px = Px | 1 is monotone,  by Theorem 4.1(l)(iv)] 

--- 211ex,=~(t + s, ~ox(t)) - Px,~f~(t, ~x(t))ll~,r + s) - ~ox(/)ll~,~ 

Appealing to the inequality of  the proposition, we have 

IlPx,,~(t + s, q~x(t)) - Px,~f~(t, wx(t))lln,~ 

_ 1  
- ~ IlJx,,~(t + s, qox(t)) - Jx,~f~(t, ~x(t))ll~,~ 

<- cne(t)s(llJx,~(t, ~ox(t))ll~,~ + 1 ' ( l l~x( t ) l ln ,0)  

= cn~(t)s(ll~x(t) + XP• ~x(t))ll,~,~ + ~(ll~x(t)lln,0) 

<- c~(t)s(ll~x(t)ll,~,~ + IIPx,=~(t, ~x(t))ll~,e + q~(ll~ox(/)lln,0) 
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by (i) above, where k~3~ is the continuous function on R+ given by k~3~(t) = 
~l~(t) + q~(k~l~(t)), and since ~x is a solution of (5.1)x. 

Hence, 

d 
dt II~x(t + s) - ~a(t)l[2~ 

<-2c~(t)s(k(3~(t)+ d (.q, q~x(t)~))ll~x(t+s)-~• 

( 1 < s2\k(3~(t ) + dclt(~l ' ~x(t)/~) + (c,l~(t))2llq~x(t + s ) -  

whence 

II~x(t + s) - ,r 

- I I ~ ( s )  - ~(o)11~,~ exp[Cn~(t)] 

f, + 2s2 )o dr exp[Cn~(t) - C~(r~l E~(t~l 2 + ar/~,  ~ ( r ~  

by Gronwall's inequality, where Cn~(t ) = fro [c~(r)] 2. Dividing both sides of 
the last inequality by s 2 and letting s ,I, 0, we get 

--< (rl, exp[Cn~(t)] 

+ 2 d r  exp[Cn~(t) - Crib(r)] [/d~(t)] 2 + d in ,  cpa(r)~) 

-< IIm~(0,  Xo)II~,e exp[Cn~(0] 

+ 2 dr exp[Cne(t) - Crib(r)] [~ ( t ) ]  2 + d (~1, ~px(r)~) 

since d (~, = IlPx,,~(0, q~x(0))ll~,~ -< [[m~,~(0, xo)ll~,~ 
= 

by Theorem 4.1 (2) 1 
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where/64~, k~5~: R+ ~ R+ are continuous with obvious definitions. Then, by 
Gronwall 's  inequality, we finally have 

q~x(t)~) t 

for some continuous function k~2~: R+ ~ R+ independent of k E (0, 1]. This 
concludes the proof. �9 

Remark. We look next at the issue of convergence of the net { q~• h 
(0, 1]}, where q~h is a solution of (5.1)• 

Notation. Let To, T be arbitrary, with T > To >-- 0 and I = [To, T). Then, 
with k~2~, qq, ~ E D ~ E, as in Proposition 5.4(ii), we define the number 
k~,z~ ~ by 

k~)o,r,~ = sup /d2d(t), "q, { E D | E 
tEI=[To, T) 

Proposition 5.5. Let q~a be the unique adapted solution of  Problem (5.1)x, 
h > 0. Then, for each compact subinterval I = [To, T) C K~, with T > To 
--> 0, the family {q~x: h E (0, 1]} is a Cauchy net in C(I, ~ )  which converges 
on I to a weakly absolutely continuous adapted member  ~ of  C(I, s~). 

Proof  Let h E (0, 1] a n d / =  [To, T). Then, by Proposition 5.4(ii), we have 

]Px(t, q~x(t))('q, ~)[ = d (,q, q%(t)~) <-/6~d(t) -- k~,r,nr 

for a l l ( ) t , t )  ~ (0, 1] X I a n d q q , ~  ~ D @ E ,  withnq = u |  = v |  
e(13), ~, [3 ~ L~,Io~(R+), u, v ~ D. This shows that {Pa(t, q~a(t))('q, ~): h 
(0, 1]} is a bounded net of complex numbers for arbitrary t ~ I and ~1, ~ 
D |  

Next, for h, ix ~ (0, 1], t ~ I, and "q, ~ ~ D @___ E, with nq = u | e(eQ, 
= v | e(f3), et, f3 e L~clo~(R+), u, v e D, we have 

1 
II,~x(t) - %(t)112,~ 

'If = ~ dll,.px(s) - ~(s) l lZn,e  

f: = Re(((dqox(s) - dq~(s))~, "q)(~q, (qox(s) - q~(s))~)) 

= - ds Re(((Px,~(s, qox(s)) - P~,~3(s, q~(s)))~, n ) ( n ,  (w~(s)  - w~(s ) )~ ) )  
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As 

= - ds Re((((Px,~(s, q~x(s)) - P~,~(s,  tp~(s))) | 1)(~ | xl), 

= - ds Re{(((Px,~(s ,  ~px(s)) - P~,~(s,  tp~(s))) | I)(~ @ "q), 

q)(n,~)(kPx,,~(s, q~.(s)), IxP~,,~f~(s, ~p~(s))))(2 ) 

+ (((Px.~,~(s, q~x(s)) - Pv.,~(s, q~(s))) | I)(~ | qq), 

%~,dJ~ ,~ ( s ,  ,px(s)), J~,~(s,  %(s))))(2)} 

[by using x = J~,~(t, x) + ~P,~,~(t, x), ~r > O] 

Ft 

<-- - ~  ds Re{(((Px,~(s, q~x(s)) - e~ ,~(s ,  tp~(s))) | i)(~ | "q), 
3 0 

~.,r tp• IxP~.~l~(s , q~(s))))(2)} 

[since @ = P | i is monotone and l(iii) of Theorem (4.1) holds] 

f0 = ds Re{h(P~,~(s, q~(s)), ~l)(~q, Px,~t~(s, q~x(s))) 

+ v/P~,,.(s, ,~.(s))~, .q)(.q, P~,,,.(s, ,~(s))~)} 

;o -- ds (ikl(T I, Px,~f~(s, ~Px(s))~>l: + P~l('q, P~,=f3(s, ~p~(s)){)[ 2) 

[~, Re((P~,~(s, q~(s))~, rl)(" q, Px ,~( s ,  q~x(s))~))] 

-< x l~e~,~(s, ~(s))~,  "q) ll('q, P~.o~(s, ,p~(s))~) I 

<_ x_ t(n, P~,~.(s, ~(s))~)[ ~ + x l(n, P~,,.(s, ,p~(s))~)l ~ 
4 

and (similarly) 

[Ix Re((nxs43(s, q~x(s))~, "q)('q, P~x,~(s, q%(s)){)) I 

-< ~ I<n, P~,~(s, ~(s))~)l  ~ + ~[<n, P~ ~(s ,  ,~(s))~)] ~ 
4 
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it follows that 

1 II~(t) - ~(t)llZ,r 

4 
ds (X[(~, P~,.~(s, ,p~(s))r + ~1(~, P~,~(s, ,p~(s)))l ~) 

t 
<- - (x + ~)(k~o)T,~0 2 4 

for all t ~ I, k, ix ~ (0, 1], ~1, ~ ~ D @ E, showing that the net {q~• k 
(0, 1]} is Cauchy in C(I, ~ )  and converges to some q~ in C(I, ~ )  as k .1. 0. 
This q~ is weakly absolutely continuous. To see this, let To --< to < tl < " '" 
< t, = T be a disjoint partition of  [To, T), with ~ o  l (tj+l - tj) < 0% and % 

~ D @___ E with "q = u | e(a),  ~ = v | e([3), a ,  [3 ~ L~,loc(R+), u, v ~ D. 
Then, from 

d ( ~ ,  ,p~(s)~) = ~ k~!~,~ q~x(s))('q, 

we get 

I ( n ,  q~h(tj+l)~) --  (T~, ~k(tj)~) 

I) 
+l d 

= ds ~ ('q, tpx(s)~) 

<-- ds (~q, q~x(s)~) 
tj 

<- k~!r, .~(t j+~ - t~) 

Hence,  letting k $ 0 and summing over  j ,  we get 

n-1 n--1 
I('q, q~(tj+l)~) - (~q, q~(tj)~)] <-- k~),7;,~r ~ (tj+, - tj) 

j=0 j=0 

showing that q~ is weakly absolutely continuous. Finally, it is clear that q~ 
is adapted. 

This concludes the proof. �9 

Remark. As t ~ (~, q~(t)~), t ~ R+, is absolutely continuous for arbitrary 
"q, ~ E D ~ E, there is a set of  Lebesgue measure zero in R+ outside which 
it is differentiable (Hewitt and Stromberg,  1965), showing that q~ is weakly 
differentiable at almost every t ~ R+. 
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Notation. In connection with the proof of our main theorem below, we 
employ the following notation. 

1. Let T > 0 and "q, ~ E D ~ E be arbitrary, with x I = u | e(a), ~ = 
v | e(13), a, 13 a L-~,loc(R+), u, v ~ D. 

We write L~t([0, 7)) for the closure in L2([0, T)) of  the linear span of 
the set {t ~ ('q, 0(t)~), t E [0, 7): 0 ~ L2([0, 7), ~)}  of complex-valued 
functions on [0, T). Then, L~e([0, 7)) is a Hilbert subspace of L2([0, T)). 

2. For 0 ~ L2([0, 7), ~/), we denote the function t ~ (TI, 0(t)~), t ~ [0, 
7), by 0(')('q, ~) and the multifunction [resp. the single-valued functions] 
t ~ P(t,  O(t))(~, 6) [resp. t ~ P~(t, 0(t))(-q, 6) and t ~ Jx(t, 0(t))(rl, 6)] of 
[0, T) into 2 c [resp. into C] by P( . ,  0(.))('q, ~) [resp. Px(', 0(-))('q, ~) and 
Jx(', 0('))('q, 6)]. In general, if p: [0, T) ~ sesq(D ~ E), we denote the 
function t ~ p(t)('q, ~), t E [0, T), by p(-)('q, 6). 

Remark.  The  following is our main result. 

Theorem 5.6. Suppose that Problem (5.1)0 is of hypermaximal monotone 
type and the inequality of Proposition 5.4 holds. Then, (5.1)o possesses a 
unique adapted solution. 

P r o o f  The issue of  uniqueness is settled by Proposition 5.3, since if q0~ 
and q~2 are two solutions of Problem (5.1)0 with the same initial condition, 
i.e., ~01(0) = x0 = tp2(0), then 

II~l( t )  - ~2(t)l l~,e = 0 

for all "q, ~ ~ D ~ E, t ~ R+, showing that q~ = q~z- 
Concerning the issue of existence, we shall show that the adapted map 

in Proposition 5.5 is a solution of Problem (5.1)0. 
Let h ~ (0, 1], I = [0, T), and qo x be as in Proposition 5.5. As 

[ [Iq~x(t) - ~(t) l ln ,e  - I[~(t)  - Jx,=~(t, ~x(t))l l~,e] 

- ] l q ~ x ( t )  - Jx,~f~(t, ~x(t)) l l~,~ 

for all lq, { ~ D ~ E, with ~q = u @ e(a), { = v | e([3), or, [3 
L~,to~(R+), u, v e D, it follows that the net {J~(., q0x(.))(% 6): X E (0, 1]} 
converges in C([0, 7), ,~/) to the function ('q, q~(.){) as h $ 0, for all "q, { 
D ~ E. Hence, the net {Jx(', q~x('))(Vl, 6): h e (0, 1]} converges in 
L~([0, 7)) to ('q, q~(.)~) as X $ 0. 

Define the multifunction/5: L~([0, 73) C L~([0, 7)) ~ 2 c:(t~ by 

/5(0(')(~q, 6)) = P(' ,  0('))(rl, ~), 0 e L2([0, 7), ~ )  
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Then, P is monotone. This claim will be true if 

Re((e(0(-)(aq, 5)) - q(~b(.)('q, ~)), 0(')('q, 5) - ~b(.)(~q, ~))L2(Eo,73)) >--- 0 

whenever  0(-)('q, ~), ~b(.)('q, 6) ~ L~r 7)) and p(0(')(qq, 6)) ~ P(0(.)('q, 
~)), q(d~(.)(-q, 6)) ~ P(~b(.)('q, 5)). Indeed, this is the case since 

Re((p(0(.)(qq, 6)) - q(d~(.)(-q, ~)), 0(.)('q, 6) - ~b(.)('q, ~))Lz(tO,~))) 

= Re (p(0(s)(n,  6)) - q(+(s)(n, ~)))(0(s)(n, 5) - ~b(s)(~l, 5)) 

f; = Re ds ('q, (p~(s,  0(s)) - q,,~(s, +(s)))~)('q, (0(s) - $(s))~) 

[because p(t~(s))('q, ~) ~ P(t~(s)('q, 5)) = P(s, qJ(s))('q, ~) is of  
the form p(t~(s))('q, 6) = (~q, p~f~(s, t~(s))~), 
for some p~(s ,  +(s)) E P,,~(s, d~(s)), s E R+] 

= Re ds ((p~(s,  0(s)) - q,,~(s, +(s)))~, "q)('q, (0(s) - +(s))~) 

= ds Re(( ( (p~(s ,  0(s)) - q~(s,  qb(s))) | i)(~ | ~), O~(n,~)(O(s), 

+(s)))(2) 
--> 0 [since ~ = P | 1 is monotone] 

Furthermore, /5 is maximal monotone. To see this, suppose that 0(')('q, 
~) ~ L~([0,  T)), p: [0, 7) ~ sesq(D ~ E) and 

Re((p(.)(qq, 5)) - q(qb(.)('q, ~)), 0(')('q, ~) - qb(.)('q, ~))Lz(to,r))) >-- 0 

for all +(.)('q, ~) E L~([0,  7)) and q(+(.)(~q, ~)) ~ /5(+(.)('q, ~)). Then, 

rodS Re((((p(s)  - qb(s))) | 1)(~ | -q), qb(s)))(2)) --> 0 q~(s,  ~(,,~)(0(s), 

for all +(.)(~q, ~) E L~([0,  73) and q(~b(.)(~, ~)) ~ P(+(-)(~q, ~)). Hence,  as 
= P | ~ is maximal monotone, we get p(s)(rl, ~) ~ /5(O(s)(xl, ~)), for 

almost every s e [0, T), showing that /5 is maximal monowne. 
Next, by Proposition 5.4, {Px(', q~x('))0], ~): X e (0, 1]} is a bounded 

subset of  L~([0,  7)). It fol lows that a subsequence {Px~(', q~x~('))(~l, ~): n 
N} of this net converges weakly in L~([0,  7)) to some to(.)(~q, 6) as n ~ 
with h~ $ 0. Also, as we h a v e s e e n  above, the net {Jx(-, q~x(.))('q, ~): X 
(0, 1]} converges in L~([0,  7)) to ~( ')0q, ~) as k -1, 0. As P is maximal 
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monotone, o~(s)(-q, 6) e P(~p(s)('q, 6)), or equivalently, to(s)(-q, 6) e P(s, 
q~(s))('q, 6) for almost every s e [0, 7). 

Finally, for arbitrary O ~ L~([0,  7)), we get 

for ;: dt O(t)((~q, tpx,(t)6) - ('11, x06)) = dt a~(t) 
d 

;; fo = - dt O(t) ds P~(s ,  q~x.(s))('q, 6) 

[since qo~.,, is a solution of ( 5 . 1 ) j  

Hence, as hn $ 0, this gives 

dt O(t)((~l, cp(t)6) - ('q, x06)) = - dt O(t) as o~(s)(.q, 6) 

As O is arbitrary in L2~([0, T)), it follows that 

Io (~3, ~ ( t ) 6 )  - ('q, xo6)  = - ds  ~o(s) (n ,  6) 

for all t e [O, T), whence 

d 
dt ('q' q~(t)6) = m(t)('q, 6) e P(t, q~(t))('q, 6) 

for all "q, ~ e D ~ E and almost every t e ]L- ,  since T > 0 was arbitrary. 
This concludes the proof, g 

Remark. As examples, we show that a large class of quantum stochastic 
differential inclusions which satisfy the assumptions and conclusion of  Theo- 
rem 5.6 arise as perturbations of  certain quantum stochastic differential equa- 
tions by some multivalued stochastic processes. 

Let V: ~ ~ 2 ~ [resp. o~j: 1L~ • .~ ~ ..~, j = 1, 2, 3, 4] be such that the 
multivalued stochastic process [resp. stochastic process] t ~ V(X(t)) [resp. 
t ~ toj(t, X(t)), j = 1, 2, 3, 4], t e 2L~, is in Ll2oc(~)mvs [resp. L~oc(~)] for all 
x ~ L?od.~) .  

Then, the quantum stochastic differential inclusion 

dX(t) e - ( V ( X ( t ) )  dt + to~(t, X(t)) dA~(t) + c02(t, X(t)) dAf(t) 

+ t%(t, X(t)) dA~(t)  + to4(t, X(t)) dt), almost all t ~ ~ (*) 

X(0) = Xo for some Xo e ,~ 

is a perturbation by the multivalued stochastic process V of the quantum 
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stochastic differential equation 

dz(t) = -( tol( t ,  z(t)) dA.,(t) + toa(t, z(t)) dAy(t) 

+ to3(t, z(t)) dA~(t) + 034(t , z(t)) dt), almost all t �9 R+ 

z(0) =Xo �9 

For or, [3 e L~,lo~(R+), define the single-valued map 

p ~ :  R+ x dl--, ~ 

by 

p~f~(t, x) = ix~p(t)%(t, x) + vf~(t)%(t, x) + cr~(t)to3(t, x) + o~4(t, x) 

(t, x) e R+ • ~ ,  using previous notation, and the multifunction 

P,~: R+ X s~ --* 2 ~ 

by 

P~f~(t, x) = V(x) + p~f~(t, x), (t, x) e R+ X ~l 

Problem (*) is equivalent to the nonclassical differential inclusion 

d 
dt (~1, X(t)~) �9 - P ( t ,  X(t))(x I, ~), almost all t �9 1L 

X(O) = Xo e 

where 

(*)p 

P(t, x)('q, ~) = ('q, P~f~(t, x)~), (t, x)R+ • ~1 

for arbitrary -q, ~ e D @_ E with "q = u | e(c~), ~ = v | e([3), et, [3 e 
L~,lo~(R+), u, v e D. 

There is now the following result. 

Theorem 5.Z Suppose that the multifunction P in Problem (*)p is such 
that ~ = P | 1 is in Hypmax(R+ X all), and there are a monotone increasing 
function ~ :  R+ ~ R+ and a collection {c~: "q, ~ e D @ E} of continuous 
functions from R+ --* tG such that 

[[p~(t + s, Jx,~(t, x)) - p~( t ,  Jx,~(t, x))Gs 

<--- c~e(t)s(llJx.~(t, x)ll~,e + 'V(llxll~,0) 

where Jx,~(t, "), X > 0, is the resolvent of P ~ ,  for all (t, x) E R+ • M, s 
E (0, 1], and "q, ~ E D @ E, with "q = u | e(ot), ~ = v | e([3), a ,  [3 e 
L,~,1oc(R+), u, v �9 D. Then, Problem (~,) has a unique adapted solution. 
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P r o o f  We only need to check that the inequality of  Proposi t ion 5.4 is 
satisfied under the present  assumptions.  To this end, let aq, ~ ~ D ~ E, with 
~q = u | e(o0, ~ = v | e([3), o~, [3 E L~,loc(R+), u, v E D. Then, 

l]Jx,~(t + s, x) - Jx,~(t ,  x)lln,~ 

= IlJa,~(t + s, x) - Jx ,~ ( t  + s, x + h[p ,~( t  + s, Jx,~f~(t, x ) )  

- p~f~(t, Jx.~(t ,  x))])ll~,~ 

-< Xllp=~(t + s, Jx ,~(t ,  x))  - p=~(t, Jx,=~(t, x))ll~,e 

<- Ncn~(t)s(llJx,=~(t, x)ll~,~ + 'I'(llxll~,0) 

by the assumed inequality and since x ~ Jx,~,~(t, x)  is Lipschi tzian with 
Lipschitz  constant  1, for  each t ~ R+, k > 0, and arbitrary oL, 13 
L,~,~o~(R+). As this is the inequality of  Proposition 5.4, we are done. �9 
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